Monday, June 05, 2006

REFERENCES
Avellaneda, M., 1987, Iterated homogenization, differential effective medium theory and applications: Commun.Pure Appl.Math., 40, 527-554.
Benveniste, Y., 1987, A new approach to the application of Mori-Tanaka's theory in composite materials: Mech.Mat., 6, 147-157.
Berge, P. A., Berryman, J. G., and Bonner, B. P., 1993, Influence of microstructure on rock elastic properties: Geophys.Res.Lett., submitted.
Berge, P. A., Fryer, G. J., and Wilkens, R. H., 1992, Velocity-porosity relationships in the upper oceanic crust: Theoretical considerations: J. Geophys.Res., 97, 15239-15254.
Berryman, J. G., 1980, Long-wavelength propagation in composite elastic media II.Ellipsoidal inclusions: J. Acoust.Soc.Am., 68, 1820-1831.
Berryman, J. G., and Berge, P. A., 1993, Rock elastic properties: Dependence on microstructure: in Homogenization and Constitutive Modeling for Heterogeneous Materials, C. S. Cheng and J. W. Ju (eds.), AMSE, New York, pp.1-13.
Budiansky, B., 1965, On the elastic moduli of some heterogeneous materials: J. Mech.Phys.Solids, 13, 223-227.
Cheng, C. H., and Toksöz, M. N., 1979, Inversion of seismic velocities for the pore aspect ratio spectrum of a rock: J. Geophys.Res., 84, 7533-7543.
Cleary, M. P., Chen, L.-W., and Lee, S.-M., 1980, Self-consistent techniques for heterogeneous media: ASCE J. Engng.Mech., 106, 861-887.
Eshelby, J. D., 1957, The determination of the elastic field of an ellipsoidal inclusion and related problems: Proc.Roy.Soc.London Ser.A, 241, 376-396.
Ferrari, M., 1991, Asymmetry and the high concentration limit of the Mori-Tanaka effective medium theory: Mech.Mat., 11, 251-256.
Ferrari, M., and Filipponi, M., 1991, Appraisal of current homogenizing techniques for the elastic response of porous and reinforced glass, J. Am.Ceramic So., 74, 229-231.
Gubernatis, J. E., and Krumhansl, J. A., 1975, Macroscopic engineering properties of polycrystalline materials: Elastic properties: J. Appl.Phys., 46, 1875-1883.
Hashin, Z., and Shtrikman, S., 1963, A variational approach to the elastic behavior of multiphase materials: J. Mech.Phys.Solids, 11, 127-140.
Hill, R., 1963, Elastic properties of reinforced solids: Some theoretical principles: J. Mech.Phys.Solids, 11, 357-372.
Hill, R., 1965, A self-consistent mechanics of composite materials: J. Mech.Phys.Solids, 13, 213-222.
Kuster, G. T., and Toksöz, M. N., 1974, Velocity and attenuation of seismic waves in two-phase media: I.Theoretical formulation: Geophysics, 39, 587-606.
Milton, G. W., 1985, The coherent potential approximation is a realizable effective medium theory: Commun.Math.Phys., 99, 463-500.
Mori, T., and Tanaka, K., 1973, Average stress in matrix and average elastic energy of materials with misfitting inclusions: Acta Metal., 21, 571-574.
Norris, A. N., 1985, A differential scheme for the effective moduli of composites: Mech.Mat., 4, 1-16.
Norris, A. N., 1989, An examination of the Mori-Tanaka effective medium approximation for multiphase composites: ASME J. App.Mech., 56, 83-88.
Toksöz, M. N., Cheng, C. H., and Timur, A., 1976, Velocities of seismic waves in porous rocks: Geophysics, 41, 621-645.
Walpole, L. J., 1969, On the overall elastic moduli of composite materials: J. Mech.Phys.Solids, 17, 235-251.
Walsh, J. B., 1969, New analysis of attenuation in partially melted rock: J. Geophys.Res., 74, 4333-4337.
Weng, G. J., 1984, Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions: Internat.J. Engng.Sci., 22, 845-856.
Wu, T. T., 1966, The effect of inclusion shape on elastic moduli of a two-phase material: Internat.J. Solids Structures, 2, 1-8.
Zimmerman, R. W., 1991, Elastic moduli of a solid containing spherical inclusions: Mech.Mat., 21, 17-24.

0 Comments:

Post a Comment

<< Home