Friday, October 14, 2005

A collection of references on High-Resolution Non-Oscillatory Central Schemes

-- CENTRAL STATION --
A collection of references on
High-Resolution Non-Oscillatory Central Schemes
Second-order central schemes in one-space dimension
Third-and higher-order central schemes in one-space dimension
Non oscillatory central schemes in several space dimensions
Non oscillatory central schemes on unstructured and overlapping grids
Non oscillatory central schemes for incompressible flows
Non oscillatory central schemes for Hamilton-Jacobi equations
Applications of non-oscillatory central schemes for semi-conductors
Applications to Sedimentation, Flocculations and related models
Non oscillatory central schemes -- applications to...
Multi-component problems
Relaxation problems and stiff source terms
Extended thermodynamics
Balance laws: Shallow-water/Saint-Venant, Solar atmosphere, ...
Saturating dissipation
Homogenization and multiscale
Discrete kinetic models
MHD
The p-system
Riemann problems
Granular Avalanches
Second order central schemes in one space dimension
Back to Top
H. Nessyahu & E. Tadmor (1990) [pdf file]Non-oscillatory central differencing for hyperbolic conservation lawsJournal of Computational Physics 87 (1990) 408-463.
D. Levy & E. Tadmor (1997) [postscript file]Non-oscillatory boundary treatment for staggered central schemes
G.-S. Jiang, D. Levy, C.-T. Lin, S. Osher & E. Tadmor (1998) [pdf file]High-resolution non-oscillatory central schemes with non-staggered grids for hyperbolic conservation lawsSIAM Journal on Numerical Analysis 35 (1998) 2147-2168.
A. Kurganov & E. Tadmor (2000) [pdf file]New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equationsJournal of Computational Physics 160 (2000) 214-282.
A. Kurganov & G. Petrova (2000) [pdf file]Central schemes and contact discontinuitiesMathematical Modelling and Numerical Analysis 34 (2000) 1259-1275.
K.-A. Lie & S. Noelle (2003) [pdf file]On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation lawsSIAM J. Scientific Computation 24 (2003) 1157-1174.
Third and higher order central schemes in one space dimension
Back to Top
X-D. Liu & E. Tadmor (1998) [pdf file]Third order nonoscillatory central scheme for hyperbolic conservation lawsNumerische Mathematik 79 (1998) 397-425.
F. Bianco, G. Puppo & G. Russo (1998) [pdf file]High order central schemes for hyperblic systems of conservation laws"Hyperbolic Problems: Theory, Numerics, Applications", Proceedings of the 7th international conference held in Zurich, Feb. 1998 (M. Fey and R. Jeltsch, eds.), Int'l series in Numer. Math. Vol 129, Birkhauser, 1999, 55-64.
F. Bianco, G. Puppo & G. Russo (1999) [pdf file]High order central schemes for hyperbolic systems of conservation lawsSIAM Journal on Scientific Computing 21 (1999) 294-322.
D. Levy, G. Puppo & G. Russo (1999) [pdf file]Central WENO schemes for hyperbolic systems of conservation lawsMathematical Modelling and Numerical Analysis 33 (1999) 547-571.
D. Levy, G. Puppo & G. Russo (2000) [pdf file]On the behavior of the total variation in CWENO methods for conservation lawsApplied Numerical Mathematics 33 (2000) 407-414.
A. Kurganov & D. Levy (2000) [pdf file]A third-order semi-discrete central scheme for conservation laws and convection-diffusion equationSIAM Journal on Scientific Computing 22 (2000) 1461-1488.
G. Puppo (2002) [pdf file]Numerical entropy production on shocks and smooth transitionsJournal of Scientific Computing 17 (2002) 263-271.
J. Qiu & C.-W. Shu (2002) [pdf file]On the construction, comparison, and local characteristic decompositions for high order central WENO schemesJournal of Computational Physics 183 (2002) 187-209.
E. Tadmor & J. Tanner (2003) [pdf file]An adaptive order Godunov type central scheme"Hyperbolic Problems: Theory, Numerics, Applications", Proceedings of the 9th international conference held in CalTech, Mar. 2002, (T. Hou & E. Tadmor eds.) Springer 2003, pp. 871-880.
Central schemes in several space dimensions
Back to Top
G.-S. Jiang & E. Tadmor (1998) [pdf file]Non-oscillatory central schemes for multidimensional hyperbolic conservation lawsSIAM Journal on Scientific Computing 19 (1998) 1892-1917.
D. Levy (1998) [gzipped file]Third-order 2D Central Schemes for Hyperbolic Conservation LawsINRIA School on Hyperbolic Systems Vol. I (1998) 489-504.
T. Katsaounis & D. Levy (1999) [pdf file]A modified structured central scheme for 2D hyperbolic conservation lawsApplied Mathematics Letters 12 (1999) 89-96.
D. Levy, G. Puppo & G. Russo (2000) [pdf file]A third order central WENO scheme for 2D conservation lawsApplied Numerical Mathematics 33 (2000) 415-421.
D. Levy, G. Puppo & G, Russo (2000) [pdf file]Compact central WENO schemes for multidimensional conservation lawsSIAM Journal on Scientific Computing 22 (2000) 656-672.
A. Kurganov & G. Petrova (2001) [pdf file]A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problemsNumerische Mathematik 88 (2001) 683-729.
A. Kurganov, S. Noelle & G. Petrova (2000) [pdf file]Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equationsSIAM Journal on Scientific Computing 23 (2001) 707-740.
W. Rosenbaum, M. Rumpf & S. Noelle (2000) [gzipped file]An adaptive staggered scheme for conservation laws"Hyperbolic Problems: Theory, Numerics, Applications"Proceedings of the 8th international conference held in Magdeburg, Feb. 2000
K.-A. Lie & S. Noelle (2003) [pdf file]An improved quadrature rule for the flux computation in staggered central difference schemes in multi-dimensionsJournal of Scientific Computing 18 (2003) 69-81.
K.-A. Lie & S. Noelle (2000) [gzipped file]A naive implementation of ACM in nonoscillatory central difference schemes for 2D Euler equationsProceedings of the 11th ECMI conference.
R. Liska & B. Wendroff (2002) [pdf file]Comparison of several difference schemes on 1D and 2D test problems for the Euler equationsPreprint
D. Levy, G. Puppo & G. Russo (2002) [pdf file]A forth order central WENO scheme for multi-dimensional hyperbolic systems of conservation lawsSIAM J. Scientific Computing 24 (2002) 480-506.
K.-A Lie, S. Noelle & Rosenabaum (2002) [pdf file]On the resolution and stability of central difference schemesProceedings of the Third International Symposium on Finite Volumes for Complex ApplicationsPorquerolles, France, Hermes Penton Ltd, London (2002) 793-800.
X.-D. Liu & P. D. Lax (2003) [pdf file]Positive schemes for solving multi-dimensional hyperbolic systems of conservation laws IIJ. Computational Physics 187 (2003) 428-440.
P. Arminjon & A. St-Cyr (2003) [pdf file]Nessyahu朤admor-type central finite volume methods without爌redictor for 3D Cartesian and unstructured tetrahedral爂ridsApplied Numer. Math. 46 (2) (2003) 135-155.
L. Pareschi, G. Puppo & G. Russo (2004) [pdf file]Central Runge-Kutta for conservation lawsPreprint
A. Kurganov & G. Petrova (2005) [pdf file]Central-upwind schemes on triangular grids for hyperbolic systems of conservation lawsNumerical Methods for Partial Differential Equations 21 (2005), 536-552.
Central schemes on unstructured and overlapping grids
Back to Top
P. Arminjon, M.-C. Viallon & A. Madarne (1997) [html file]A finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for conservation laws on unstructured gridsInt'l J. Computational Fluid Dynamics 9(1) (1997), 1-22.
P. Arminjon & M.-C. Viallon (1999) [pdf file]Convergence of a finite volume extension of the Nessyahu-Tadmor scheme on unstructured grids for a two-dimensional linear hyperbolic equations SIAM Journal on Numerical Analysis 36 (1999) 738-771.
B. Haasdonk, B. Kroner & D. Rohde (2001) [pdf file]Convergence of a staggered Lax-Friedrichs scheme for nonlinear conservation laws on unstructured two-dimensional gridsNumerische Mathematik 88 (2001) 459-484.
M. Kuther (2001) [pdf file]Error estimates for the staggered Lax-Friedrichs scheme on unstructured gridsSIAM Journal on Numerical Analysis 39 (2001) 1269-1301.
S. Karni, A. Kurganov & G. Petrova (2002) [pdf file]A smoothness indicator for adaptive algorithms for hyperbolic systemsJ. of Computational Physics 178 (2003) 323-341.
M. Kuther and M. Ohlberger (2003) [pdf file]Adaptive second-order central schemes on unstructured staggered gridsProceedings of the 9th international conference on "Hyperbolic Problems: Theory, Numerics, Applications"CalTech, Mar. 2002, (T. Hou & E. Tadmor eds.) Springer 2003, pp. 675-684.
P. Arminjon & A. St-Cyr (2003) [pdf file]New space staggered and time interleaved 2nd order finite volume methodsProceedings of the 9th international conference on "Hyperbolic Problems: Theory, Numerics, Applications"CalTech, Mar. 2002, (T. Hou & E. Tadmor eds.) Springer 2003, pp. 295-304.
Yingjie Liu (2004) [pdf file]Central Schemes on Overlapping CellsPreprint
Non-oscillatory central schemes for incompressible flows
Back to Top
R. Kupferman & E. Tadmor (1997) [pdf file]A fast high-resolution second-order central scheme for incompressible flowsProceedings of the National Academy of Sciences 94 (1997) 4848-4852.
D. Levy & E. Tadmor (1997) [gzipped file]Non-oscillatory central schemes for the incompressible 2-D Euler equationsMathematics Research Letters 4 (1997) 1-20.
R. Kupferman (1998) [pdf file]Simulation of viscoelastic fluids: Couette-Taylor FlowJournal of Computational Physics 147 (1998) 22-59.
R. Kupferman (1998) [pdf file]A numerical study of the axisymmetric Couette-Taylor problem using a fast high-resolution second-order central schemeSIAM Journal on Scientific Computing 20 (1998), 858-877.
R. Kupferman & M. Denn (1999) [pdf file]Simulation of the evolution of concentrated shear layers in a Maxwell fluid with a fast high-resolution finite-difference schemeJournal of Non-Newtonian Fluid Mechanics 84 (1999) 275-287.
R. Kupferman (2001) [pdf file]A central-difference scheme for a pure streamfunction formulation of incompressible viscous flowSIAM Journal on Scientific Computing 23 (1) (2001) 1-18.
V. Naulin & A. Nielsen (2003) [pdf file]Accuracy of spectral and finite difference schemes in 2D advection problemsSIAM Journal of Scientific Computing 25 (2003) 104-126.
R. Grauer & F. Spanier (2003) [pdf file]A note on the use of central schemes for the incompressible Navier-Stokes flowsJournal of Computational Physics 192 (2003) 727-731.
Non-oscillatory central schemes -- Hamilton-Jacobi equations
Back to Top
C.-T. Lin & E. Tadmor (1998) [pdf file]L1-stability and error estimates for approximate Hamilton-Jacobi solutionsNumerische Mathematik 87 (2001) 701-735.
C.-T. Lin & E. Tadmor (2000) [pdf file]High-resolution non-oscillatory central scheme for Hamilton-Jacobi equationsSIAM Journal on Scientific Computation 21 (2000) 2163-2186.
A. Kurganov & E. Tadmor (2000) [pdf file]New high-resolution semi-discrete central schemes for Hamilton-Jacobi equationsJournal of Computational Physics 160 (2000) 720-742.
S. Bryson & D. Levy (2003) [pdf file]High-order semi-discrete central-upwind schemes for multi-dimensional Hamilton-Jacobi equationsJournal of Computational Physics 189 (2003) 63-87.
S. Bryson & D. Levy (2003) [pdf file]High-order schemes for multi-dimensional Hamilton-Jacobi equations"Hyperbolic Problems: Theory, Numerics, Applications", Proceedings of the 9th international conference held in CalTech, Mar. 2002, (T. Hou & E. Tadmor eds.) Springer 2003, pp. 387-396..
S. Bryson & D. Levy (2003) [pdf file]Central schemes for multi-dimensional Hamilton-Jacobi equationsSIAM Journal on Scientific Computing 25, 2003, 769-791.
S. Bryson & D. Levy (2003) [pdf file]High-order central WENO schemes for multi-dimensional Hamilton-Jacobi equationsSIAM Journal of Numerical Analysis 41, 2003, 1339-1369.
S. Bryson, A. Kurganov, D. Levy & G. Petrova (2004) [pdf file]Semi-discrete central-upwind schemes with reduced dissipation for Hamilton-Jacobi equationsIMA J. Numerical Analysis 25, 2005, 113-138.
Applications of non-oscillatory central schemes to semi-conductors
Back to Top
M. Trovato & P. Falsaperla (1998) [pdf file]Full nonlinear closure for a hydrodynamical model of transport in siliconPhysical Review B-Condensed Matter 57 (1998) 4456-4471.
V. Romano & G. Russo (2000) [gzipped file]Numerical solution for hydrodynamical models of semiconductorsMathematical Models & Methods in Applied Sciences 10 (2000) 1099-1120.
A. M. Anile, N. Nikiforakis & R. M. Pidatella (2000) [pdf file] Assessment of a high resolution centered scheme for the solution of hydrodynamical semiconductor equationsSIAM Journal of Scientific Computing 22 (2000) 1533-1548.
A. M. Anile, V. Romano & G. Russo (2000) [pdf file]Extended hydrodynamical model of carrier transport in semiconductorsSIAM Journal Applied Mathematics 61 (2000) 74-101.
A. M. Anile & V. Romano (2000)Hydrodynamical Modeling of Charge Carrier Transport in SemiconductorsMeccanica 35 (2000) 249-296.
V. Romano (2001) [pdf file]2D simulation of a silicon MESFET with a nonparabolic hydrodynamical model based on the maximum entropy principleJournal of Computational Physics 176 (2001) 70-92.
V. Romano (2001) [pdf file]Non-parabolic band hydrodynamical model of silicon semiconductors and simulation of electron devicesMathematical Methods in eth Applied Sciences 24 (2001) 439-471.
C. Gardner, A. Gelb & J. Hernandez (2002) [gzipped file]A comparison of modern hyperbolic methods for semiconductor device simulation: NTK central schemes vs. CLAWPACKVLSI Design 15 (2002) 721-728.
Applications to Sedimentation, Flocculations and related models
Back to Top
R. Burger & F. Concha (1998) [pdf file]Mathematical model and numerical simulation of the setting of flocculated suspensionsInternational Journal of Multiphase Flow 24 (1998) 1005-1023.
E. B. Pitman (1998) [pdf file]Forces on bins: The effect of random frictionPhysical Review E 57 (1998) 3170-3175.
R. Burger, F. Concha, K. K. Fjelde, & K. H. Karlsen (2000) [pdf file]Numerical simulation of the setlling of polydisprese suspensions of spheresPowder Technology 113 (2000) 30-54.
R. B黵ger, S. Evje, K. H. Karlsen & K.-A. Lie (2000) [pdf file]Numerical methods for the simulation of the settling of flocculated suspensionsChemical Engineering Journal 80 (2000) 91-104.
R. Burger, K. -K Fjelde, K. Hofler, & K. H. Karlsen (2000) [pdf file]Central difference solutions of the kinematic model of settling of polydispersesuspensions and three-dimensional particle-scale simulationsJournal of Engineering Mathematics 41 (2001) 167-187.
B. Xue & Y. Sun (2003) [pdf file]Modeling of sedimentation of polydisperese spherical beads with a broad size distributionChemical Engineering Science 58 (2003) 1531-1543.
S. Berres & R. Bürger (2003) [pdf file]On gravity and centrifugal settling of polydisperse suspensions forming compressible sedimentsInt'l J. Solids & Structures 40 (2003), 4965-4987.
S. Berres, R. Bürger, K. H. Karlsen & E. M. Tory (2003) [pdf file]Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compressionSIAM J. Applied Mathematics 64 (2003), 41-80.
S. Berres, R. Bürger & K. H. Karlsen (2004) [pdf file]Central schemes and systems of conservation laws with discontinuous coefficients modeling gravity separation of polydisperse suspensionsJ. Comp. Appl. Math. 164-165 (2004) 53-80
S. Berres, R. Bürger & E. M. Tory (2004) [pdf file]Mathematical model and numerical simulation of the liquid fluidization of polydisperse solid particle mixturesComput. Visual Sci. 6 (2004) 67-74.
Non-oscillatory central schemes -- applications to > Multi-component problems
Back to Top
B. Engquist & O. Runborg (1996) [pdf file]Multiphase computations in geometrical opticsJournal of Computational and Applied Mathematics 74 (1996) 175-192.
R. Fazio & G. Russo (2000) [gzipped file]A Lagrangian central scheme for multi-fluid flows"Hyperbolic Problems: Theory, Numerics, Applications", Proceedings of the 8th Int'l conference held in Magdeburg, Feb. 2000
L. Gosse (2002) [gzipped file]Using K-branch entropy solutions for multivalued geometric optics computationsPreprint
S. Karni, E. Kirr, A. Kurganov & G. Petrova (2003) [pdf file]Compressible two-phase flows by central and upwind schemesMathematical Modeling and Numerical Analysis 38 (3) (2004) 477-494.
Non-oscillatory central schemes -- applications to > Relaxation problems and stiff source terms
Back to Top
F. Bereux & L. Sainsaulieu (1997) [pdf file]A Roe-type Riemann solver for hyperbolic systems with relaxation based on time-dependent wave-decompositionNumerische Mathematik 77 (1997) 143-185.
S. F. Liotta, V. Romano & G. Russo (2000) [pdf file]Central schemes for balance laws of relaxation typeSIAM Journal on Numerical Analysis 38 (2000) 1337-1356.
L. Pareschi (2001) [pdf file]Central differencing based numerical schemes for hyperbolic conservation laws with relaxation termsSIAM Journal Numerical Analysis 39 (2001) 1395-1417.
C. Arvanitis, T. Katsaounis & C. Makridakis (2001) [pdf file]Adaptive finite element relaxation schemes for hyperbolic conservation lawsMathematical Modeling and Numerical Analysis 35 (1) (2001) 17-33.
S. Jin, L. Pareschi & M. Slemrod (2002) [gzipped file]A relaxation scheme for solving the Boltzmann equation based on the Chapman-Enskog expansionActa Mathematicas Applicatae Sinica (English Series) 18, No.1, (2002).
A. Kurganov (2002) [pdf file]An accurate deterministic projection method for hyerbolic systems with stif source term"Hyperbolic Problems: Theory, Numerics, Applications", Proceedings of the 9th international conference held in CalTech, Mar. 2002, (T. Hou & E. Tadmor eds.) Springer 2003, pp. 665-674.
Non-oscillatory central schemes -- applications to > Extended thermodynamics
Back to Top
M. Torrilhon (2000) [pdf file]Characteristic waves and dissipation in the 13-moment-caseContinuum Mech. Thermodynamics 12 (2000) 289-301.
Non-oscillatory central schemes -- applications to > Balance laws
Back to Top
S. F. Liotta, V. Romano & G. Russo (1998) [gzipped file]Central schemes for systems of balance laws"Hyperbolic Problems: Theory, Numerics, Applications", Proceedings of the 7th Int'l conference held in Zurich, Feb. 1998 (M. Fey and R. Jeltsch, eds.), Int'l Series on Numerical Mathematics, Birkhauser, Vol. 130, 1999, 651-660
G. Russo (2002) [pdf file]Central schemes and systems of balance lawsin "Hyperbolic Partial Differential Equations, Theory, Numerics and Applications", (A. Meister and I. Struckmeier,eds.) Vieweg, Wiesbaden (D), 2002.
A. Kurganov & D. Levy (2002) [pdf file]Central-Upwind Schemes for the Saint-Venant SystemMathematical Modeling and Numerical Analysis 36 (2002) 397-425.
N. Crnjaric-Zic, S. Vukovic & L. Sopta (2004) [pdf file]Balanced finite volume WENO and central WENO schemes for the shallow water and the open-channel flow equationsJournal of Computational Physics 200 (2004) 512-548.
S. Bryson, A. Kosovichev & D. Levy (2005) [pdf file]High-order shock-capturing methods for modeling dynamics of the solar atmosphereNonlinearity 201 (2005) 1-26.
A. Chertok & A. Kurganov (2004) [pdf file]On a Hybrid Finite-Volume-Particle MethodMathematical Modeling and Numerical Analysis 38(6) (2004) 1071-1091.
Non-oscillatory central schemes -- applications to > Saturating dissipation
Back to Top
A. Kurganov & P. Rosenau (1997) [pdf file]Effects of a saturating dissipation in Burgers-type equationsCommunications on Pure and Applied Math. L (1997) 753-771.
A. Kurganov, D. Levy & P. Rosenau (1998) [pdf file]On Burgers-type equations with nonmonotonic dissipative fluxesCommunications on Pure & Applied Mathematics LI (1998) 443-473.
J. Goodman, A. Kurganov & P. Rosenau (1999) [pdf file]Breakdown in Burgers-type equations with saturating dissipation fluxesNonlinearity 12 (1999) 247-268.
J. Otero, L. A. Dontcheva, H. Johnston, R. A. Worthing, A. Kurganov, G. Petrova & C. Doering (2004) [pdf file]High Raleigh Number Convection in a Fluid Saturated Porous LayerJournal of Fluid Mechanics 500 (2004), 263-281.
Non-oscillatory central schemes -- applications to > Homogenization and Multiscale
Back to Top
E. Tadmor & T. Tassa (1997) [pdf file]On the homogenization of oscillatory solutions to nonlinear convection-diffusion equationsAdvances in Mathematical Sciences and Applications 7(1) (1997) 93-117.
X. Li & W. E (2004) [pdf file]Multiscale modeling of the dynamics of solids at finite temperatureJ. Mech. Phys. solids(53) 2004, 1650-1685.
Non-oscillatory central schemes -- applications to > Discrete kinetic models
Back to Top
E. Gabetta, L. Pareschi & M. Ronconi (2000) [gzipped file]Central schemes for hydrodynamical limits of discrete-velocity kinetic modelsTransport Theory and Statistical Physics 29 (2000) 465-477.
A. Kurganov (2002) [pdf file]Semi-discrete central schemes for balance laws. Application to the Broadwell modelProceedings of the Third International Symposium on Finite Volumes for Complex Applications
Non-oscillatory central schemes -- applications to > MHD
Back to Top
C.C. Wu & T. Chang (2001) [pdf file]Further study of the dynamics of two-dimensional MHD coherent structures -- a large-scale simulationJournal of Atmospheric and Solar-Terrestrial Physics 63 (2001) 1447-1453.
K. Germaschewski, A. Bhattacharjee, T. Linde, R. Rosner, A. Siegel, D. Keyes & F. Dobrian (2003) [pdf file]The magnetic reconnection code: framework and applicationSciDAC-TOPS, CMRS poster.
M. Torrilhon (2003) [pdf file]Non-uniform convergence of finite volume schemes for Riemann problems of ideal magnetohydrodynamicsJournal of Computational Physics 192(1) (2003) 73-94.
J. Kleimann, A. Kopp, H. Fichtner, R. Grauer, & K. Germaschewski (2004) [pdf file]Thre-dimensional MHD high-resolution computations with CWENO employing adaptive mesh refinmentComput. Physics Communication 158 (2004) 47-56.
J. Balbas, E. Tadmor, & C.-C. Wu?2004) [pdf file]Non-oscillatory central schemes for one- and two-dimensional MHD equationsJournal of Computational Physics 201 (2004) 261-285.
P. Arminjon & R. Touma?2004) [pdf file]Central finite volume methods with constrained transport divergence treatment for ideal MHDJournal of Computational Physics (2004)
J. Balbas & E. Tadmor (2005) [pdf file]Non-oscillatory central schemes for one- and two-dimensional MHD equations. II: High-order semi-discrete schemesPreprint (2005)
Non-oscillatory central schemes -- applications to > The p-system
Back to Top
F. Hoch & M. Rascle (1999) [pdf file]A numerical study of a pathological example of p-systemSIAM Journal of Numerical Analysis 36 (1999) 1588-1603.
Non-oscillatory central schemes -- applications to > Riemann problems
Back to Top
A. Kurganov & E. Tadmor (2000) [pdf file]Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solversNumerical Methods for Partial Differential Equations 18 (2002) 548-608.
Non-oscillatory central schemes -- applications to > Granular Avalanches
Back to Top
Y.C. Tai, S. Noelle, J.M. N.T. Gray & K. Hutter (2001) [pdf file]Shock-capturing and front-tracking methods for granular avalanchesJournal of Computational Physics 175 (2001) 269-301.

0 Comments:

Post a Comment

<< Home